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In this paper elementary boundary integral equations for the
Helmholtz equation in the exterior domain, based on Green’s for-
mula or through representation of the solution by layer potentials,
are considered. Even when the partial differential equation has a
unique solution, for any given closed boundary I, these elementary
boundary integral equations can be shown to be singular at a count-
able set of characteristic wavenumbers., Spectral properties and
conditioning of the boundary integral operators and their discrete
boundary element counterparts are studied near characteristic
wavenumbers, with a view to assessing the suitability of these
formulations for the solution of the exterior Helmholtz equation.
Collocation methods are used for the discretisation of the boundary
integral equations which are either of the Fredhelm firstkind, second
kind, or hyper-singular type. The effect of quadrature errors on
the aceuracy of the discrete collocation methods is systematically
investigated. @ 1995 Academic Press, Inc.

1. INTRODUCTION

The underlying problem that is considered in this paper is
the solution of the Helmholtz equation,

Vig(p) + k*e(p) =0, pED,, (1)

in two space dimensions, where [, is the infinite region exterior
1o a closed boundary T, with £ being the complex wavenumber
and Tm(&) = (. The majority of the results in this paper extend
in a simple manner to the three-dimensional case. Towever,
the numerical analysis of boundary integral equations in three
dimensions is not as yet complete, For simplicity the boundary
I" will be assumed to be in C™.

In this paper we will be mainly concerned with the Dirichelt
or Neumann boundary conditions

“0) =@ o E@=fp), pET. @)

For (13-(2) to possess a unique solution, ¢ needs to satisfy a
suitable decaying condition at infinily such as the Sommerfeid
radiation condition,

de(p)

oy ke(p) = o(r "),

as r— oo, (3)

where ¥ = |p — po and py is a fized origin inside I".

The numerical solution of the exterior Helmholtz equation
through first reformulating it as a boundary integral equation
(BIE) has been of interest to researchers for several decades.
The approach has the beneficial effects of reducing the dimen-
sion of the problem by one and transforming it from an infinite
domain problem into a finite domain problem [26, 16]. In
Section 2 direct and indirect boundary integral equations of
the elementary type, derived using Green’s second theorem or
by layer potential representation, will be discussed. Even though
the Helmholtz problem in the exterior domain has a unique
solution, these elementary formulations are known to be singu-
lar for a countable set of real, positive values of the wavenum-
ber. These are precisely the values for which —k? are the
eigenvalues of the Laplacian operator in the interior region,
D_, with homogeneous Dirichlet or homogeneous Neumann
boundary conditions, respectively. These values of k give the
frequencies for the standing wave solutions of the Helinholtz
equation in the region D_ [46]. Various more complex boundary
integral formulations of this exterior problem have been pro-
posed since 1965 in order to eliminate the difficulties with the
elementary formulations. These reformulations are reviewed in
Burton | 14} and Kleinmann and Roach [29] and Amini et al. [5].
Itis our purpose here to analyse the elementary formulations, in
particular their conditioning close to characteristic wavenum-
bers, and assess their usefulness as a basis for numerical compu-
tation.

The application of finite element type discretisation schemes
to the boundary integral equation gives rise to methods termed
boundary element methods (BEM). In Section 3 the collocation
method based on piecewise polynomial approximation of the
boundary functions will be considered. The practical case where
the integrations are carried out numerically, the so-called dis-
crete collocation methods will also be discussed in that section.
In Section 4, by studying the spectral properties of the Helm-
holtz integral operators over a unit circle, we are able to analyse
the conditioning of the elementary boundary integral equations
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near their singularities. The behaviour of the boundary element
equations {(BEE), the discrete counterparts of the BIE, will also
be investigated. In Section 5 extensive numerical experiments
are reported for the case where the boundary [ is a unit circle.
The behaviour of the eigenvalues of the discrete operators and
their conditioning near and away from characteristic wavenum-
bers are also discussed. Numerical results are presented for
the solution of several Dirichlet and Neumann problems using
different boundary integral equations with the collocation
method with exact and approximate BEE. Finally the results
of the paper are summarised, together with a discussion on the
practical applications of these elementary boundary integral
equations for the solution of the exterior Helmholtz equation.

2. ELEMENTARY INTEGRAL EQUATION
FORMULATIONS

To define the various boundary integral formulations we
require the Helmholtz integral operators which are here denoted
by L, M,, M}, and N, and defined as

Liw)®) = [ Gp. Qu@dT, PED UTUD,),
G,
(Myp)p) = f raT(p’ QuiQdl, (pED_UTUD,),
q
(Mi)p) = [ Gyfp, Qui dT, (peT),
an, J T

o 4G,
Nu)p)=—| —

er
an, /v o, ®<h.

(p, uiq) 4T,

where the element of integration is at q and n, is the unit
outward normal to the boundary at q. The density function
u{q) is defined for q € I, and its smoothness requirements
will be discussed shortly. Gi{p, q) is the free-space Green’s
function or fundamental solution for the Helmholtz equation
and is given by

Gilp, Q) = ﬁ HiNkr), @)

where r = p — q, r = |r|, and H{" is the Hankel function of
the first kind of order zero.

We shall now discuss the continuity properties of the Helm-
holtz potential operators. We note that M} and N, are the normal
derivatives of the single and double layer potentials, respec-
tively. The Green’s function, the kernel of L,, satisfies

Hix) = % In(x) + 6(1), asx— 0, (5)

and therefore as p € D, — q € I" along n, has a logarithmic
singularity, whilst the kernel of M, has the stronger Cauchy
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singularity. In the derivation of boundary integral equations
the following jump conditions, as p crosses the boundary T,
are useful.

THECREM 1. Let p+, p-, and p denote general points in
D., D_, and T, respectively. Then if o(p) is a bounded den-
sity function,

lim (Lia)(p+) = (Lo)(p) = .}12:, (Lio)(p-).

PP

If o(p} is Hélder-continuous on T (ie., 0 € "), 0 < a <
1} then

,}iTp (Mio)(p.) = (Myo)(p) + 3o (p)

and

1}ign)p (M,a)(p_) = (Mo)(p) — 2o0(p).

If we assume that n, is defined not only on I" but also in a
neighbourhood of I' as a smooth extension of m,, for p € T,
we can define the derivative operators M} and N, also in a
neighbourhood of I'. It can be proved [20, 19] that

THEOREM 2. If o € €%%() then

gif:) (MioXp.) = (Mio)p) — 10(p)

and

l}ifn'p (Mio)(p-) = (Mio)p) + 2o (p).

Furthermore, if @ € €' then

I}iTp (No)(p+) = (Nyo)p) = pth (No)(p-).

In Theorems 1 and 2, the values of the operators {L.o)(p),
(M), (Mio)(p), and (N, o)p) are the so-called direct values
of the integrals, obtained by putting p € I in the definitions
of the operators and evaluating them as improper integrals. For
the direct values, the single layer operator has a logarithmic
type singularity whilst the kernel of the double layer potential
and its transpose are continnous. On the other hand, the operator
N,. the normal derivative of the double layer potential, is an
integro-differential operator. Tt can be shown that

Gy
dn,dn,

r.q) =0(p—q|™»

and, therefore, in the definition of &,, if the derivative outside
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the integral sign is taken inside, the integrand is hyper-singular
and the integral does not exist as an improper integral even in
the sense of Cauchy and needs to be interpreted in the sense
of Hadamard finite-part [23, 34, 33, 39, 12].

Clearly the operator N, unlike the other three, is not a
smoothing one. It can be shown that (see, for example, [36])

d 0
M@ = — =7, o(@ <= Gulp. ) T,
i q (6)

+ k2 L n, - 0o (GAp, 4T,

where 8/91, and /81, represent the tangential derivatives at p
and q, respectively. The kernel of the first integral operator in
(6), (8/91,)G.(p, q). is of Cauchy singular type and therefore the
N, operator is essentially a first-order differentiation operator or
a classical pseudo-differential operator of order +1. The con-
cept of pseudo-differential operators was introduced in order
to allow the study of differential and integral operators within
the same algebras of operators (45, 41], As we shall see shortly
a unified treatment of all boundary integral equations arising
here is possible within this framework.

An interesting result [40] often used in the regularisation of
the hyper-singular operator is

(LNJo(p) = (=4 + Mho(p), pET, (7

which shows that the operator —4N, is the inverse of L, to
within a compact operator. As the eigenvalues of the compact
operator M, accumulate at zero, we refer to —4N, as the asymp-
totic spectral inverse of L;. It is therefore possible to deduce
much about the spectral properties of L, or N, from the knowl-
edge of the other.

In the case where & = 0, the Helmholtz equation reduces to
Laplace’s equation with a fundamental solution G(p, q) =
—(1/27) In(lp — qf). In this case the properties of the single
and double layer potential operators and their respective normal
derivatives are well established. Due to the smoothness of the
function G, — G, by writing G, = G + (G, — G), it is easily
shown that the essential properties of the Helmholtz operators
are the same as those for the Laplacian operator [43]. These
properties can be stated in terms of the classical Hélder spaces
@G or, since we are interested in the variational solution of
the problem, more naturally these may be stated in Sobolev
spaces H'(I'). In Section 3 we shall define these Sobolev spaces
more fully. The following theorem states the essential properties
of the four operators that we need in our analysis here {43, 48].

ToeoreM 3. If [T € 6" then the pseudo-differential opera-
tors Ly, M,, M. H' (I — H*YI) and N.:H™(T) — H{)
are continuous bijective mappings.

2.1. The Interior Problem

At this stage it is advantageous to consider boundary integral
formulations of the Helmholtz equation in the interior domain,
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as these are closely related to those for the exterior domain.
Application of Green’s second theorem using the %4> functions
¢ and Gi(p, -} over D_ yields the solution to the Helmholtz
equation in the interior domain in the form

9
@(p) = —(Mi)(p) + (Li- a—q:) P, PED-, (8)

which is referred to as the Helmholtz integral representation.
In (B}, we require the pair of Cauchy data ¢(p) and (8¢/dnXp)
for p € I'. The boundary condition (2) provides ¢ or d¢/don
or in the case of spring-like scatterers a relationship between
the two. We need another relationship between the two parts
of the Cauchy data to sclve for them simultaneously with (2).
In boundary integral equations this second relationship is ob-
tained by taking the limit in Eq. (8) as p € D_ — I'. Using
the jump properties of the single and double layer operators
(Theorem 1) we obtain

#(p) = —(Mip)(p) + ho(p) + (Lk 3—;") ®, pel. ©

We may write the above equation in the form

@I+ M)p(p) = (Lk gf) ). pel. (10

Equation (9) or (10} is known as the surface Helmholiz equation
for the interior problem. This is the boundary integral equation
which should be solved, together with the boundary condition
(2), to yield the Cauchy data required in (8). On differentiating
(8) along n,, the outward normal at p and using the jump
conditions in Theorem 2 we obtain another relationship between
the Cauchy data, referred to as the differenriated surface Helm-
holtz equation, in the form

(Mgpp) = (~H + MpSE@), pET. (1D

It is well known that for any given closed boundary T, the
interior Helmholtz equation fails to have a unique solution
at a countable set of wavenumbers. To be precise we have
the following.

Tuecorem 4. The interior Helmholtz (eigenvalue) problem
Vie(p) + K’p(p) =0, pE D,

with the homogeneous Dirichlet boundary condition (p(p) =
0, p € I') has non-trivial solutions, provided k € lpy, where
Inr is a countable set of positive real values. Similarly, the
interior Helmholtz equation with a homogeneous Neumann
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boundary condition has non-trivial solutions if k € Iy, where
Iur is a countable set of real positive values.

The values of & in these two sets can easily be seen from
(10) and (11) to be related to the singularities of certain BIE
as follows,

THEOREM 5. I is precisely the set of values of k for which
the operators L, and —%1 + M} are singular. Also k € Iy iff
the operators 51 + M, and N, are singular.

2.2. The Exterior Problem

We are now able to discuss the boundary integral equations
" for the Helmholtz equation in the exterior domain. Similar to
the interior problem, a careful application of the Green’s second
theorem, this time over the unbounded domain D, yields the
solution to the exterior problem in the form of the Helmholiz
integral representation formula,

@p) = (Mo)p) — (Lk g—:) . PED,. (12)

To obtain a relationship between ¢(p) and (d¢/on)Xp) for
p € I, we take the limit as p € D, - ['. Using the jump
properties in Theorem 1, this yields

d
=3 + My(p) = (Lk a—f) (p», peT. (13)
Similar to the derivation of (11) we obtain from (12)
— 1 Nl
(Nep)p) = Gl + MY —-(p), PET. (14)

The above two boundary integral equations (13} and (14),
are referred to as the direct elementary formulations for the
exterior problem. We can now prove the following nonunique-
ness results about these elementary formulations.

THEOREM 6. * Ifk € Iyr then the boundary integral equa-
tion (13) fails to yield a unique relationship between ¢ and
deplan.

* Ifk € Iyr then (14) fails to provide a unigue relationship
between ¢ and o/on.

Proof. The results follow from Theorem 5. We need only
to remember that the eigenvalues of transposed operators such
as M, and M/ are the same,

Similar boundary integral equations referred to as indirect
boundary integral equations are obtained if we assume a repre-
sentation for the solution to the problem (1)—(3) in terms of
single or double layer potentials. As a way of an example we
may write the solution to (1)—(3), in the case of a Neumann
boundary condition, in the form
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o(p) = (Lo)Xp), PED., (15)
where o (p) for p € T is an as yet unknown density function
belonging to the Holder space “€}%. Clearly for any o, the
function Lo is a radiating wave function, i.e., a solution of
(1) and (3). To ensure that this solution also satisfies a Neumann
boundary condition such as (d¢fan)(p) = f(p), we differentiate
(15) along m, in the neighbourhood of T" and take the limit as
p — T and use the jump conditions in Theorem 2, to obtain
(- +Mpep)=fp), pEI. (16)

Once o is found from (16), we use it in (15) to obtain ¢ in
D.. The indirect boundary integral equation (16) should be
compared with its direct counterpart {13). The indirect counter-
part of (14) can be found if in (15) we represent ¢, instead of
a single layer with unknown density as a double layer with
unknown density. In this paper we concentrate mainly on the
direct formulations but similar results can be deduced trivially
for the indirect ones.

Many alternative boundary integral equations have been sug-
gested in order to avoid the problems with the direct and indirect
elementary formulations at characteristic wavenumbers, nota-
bly [44, 11, 35, 40, 15, 27, 47]. An example of these modified
formulations is the direct boundary integral equation due to
Burton and Miller [15],

{(=%1 + My + inNJe(p)
5 (17)
={L, + inGi + MD} (3—":) P, pel,

which is obtained by coupling (13) and (14). Equation (17) has
a unique solution, provided the real coupling parameter 7 is
non-zero for real values of k. For reviews of these methods the
reader is referred to [14, 29, 5].

The elementary methods have the advantages of being easier
to implement and are computationally less expensive than the
alternative methods. Reports on results of implementations of
the elementary methods first appeared in the 1960s: Banaugh
and Goldsmith [10], Chen and Schweikert [17], Chertock [18],
and Brundrit [13]. All but the last of these references seem to
have been unaware of the potential difficulties with these meth-
ods at k € Ipr U Iyr. The computational performance of ele-
mentary methads is compared with various alternative methods
in Schenck [44], Meyer et al. [37], and Sayhi et al. [42], for
example. Because of the perceived computational difficulties
at or near these characteristic wavenumbers, research has gener-
ally moved away from the elementary methods to the alternative
methods, although fairly recent articles (e.g., Hall and Robert-
son [24]) still advocate the use of elementary methods.

The purpose of this paper is to present a formal analysis and
appraisal of the elementary methods. Much of our results can
also be used for the investigation of the uniquely solvable non-
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elementary formulations such as Burton and Miller [15] or
Brakhage and Wemer [11], or [33, 40, 27, 47].

3. ANALYSIS OF COLLOCATION METHODS

Collocation methods are perhaps the most popular discretisa-
tion techniques for the solution of boundary integral equations.
We are interested in the solution of the elementary boundary
integral equations (13) and (14). As an equation for ¢, (13) is
a second kind Fredholm type, whilst (14) is a hyper-singular
or integro-differential type. On the other hand, as an equation
for ae/dn, (13) is a first kind Fredholm type, whilst (14) is a
second kind Fredholm type. In the classical analysis of numeri-
cal methods for integral equations in the continuous or square
integrable spaces, it is the compactness of the integral operator
which is often exploited. The analysis of projection methods
for smooth boundary integral equations of the second kind
follows from [8]. In the case of the first kind equations the
reader is referred to [22] and references therein. The numerical
analysis of the hyper-singular integral equation (14) has re-
ceived very little attention in the classical subspaces of continu-
ous functions.

In appropriate Sobolev space setting, the numerical analysis
of the above equations can be carried out in a unified manner
[6, 7, 43], as all the operators involved can be shown to be
examples of strongly elliptic pseudo-differential operators.
Strong ellipticity is essentially equivalent to the positivity of
the principal symbol of the operator (see [48] and references
therein) and from which the Gérding inequality follows, a result
which is essential in establishing the stability of projection
type solutions.

Let us consider

Ad=F, (18)
where s H (") — HI) is a strongly elliptic operator of
order 283. Tt follows from Theorem 3, that for the first kind
equation with L, as the operator we have 8 = —3, for the
second kind equations 8 = 0 and for the hyper-singular equation
B = +i.

If we assume a global 27 periodic mapping from I to [0,
2], the Sobolev space of H'(T') is equivalent to the space of
27 periedic distributions, H'[0, 27], which can be elegantly
defined in terms of Fourier coefficients as follows [31]:

Let ¢ € £0, 271 be a 27 periodic function with the Fou-
rier expansion

1 .
cb(t):E > bae™,

m=—t

where

T 1 1z —imr
qﬁm:Ejo $lr)e dr
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are the Fourier coefficients. For any » € (0, =) the Scbolev
space H'[0, 2] is the subspace of the 27 periodic distributions
in &0, 27 such that

4]

fir= 2 0+ miyldl <. (19)

Here we will state a generic result on the convergence of
the collocation methods, the proof of which is given in [7].
Other generalisation of this result is possible for a wider class
of approximation spaces.

Following [7], to define our collocation solution for the
boundary integral equations, we denote by ¥§ the space of
periodic smoothest splines of degree d, that is, piecewise poly-
nomials of degree d which are subsets of €' space. For the
moment we assume that the meshes are uniform, with % having
dimension n = 2#/h. The collocation approximation to (18)
may be written as an interpolatory projection in the form

@h&‘i(bﬁx - g)f,@, (20)

where

”

&u(p) = E a(p)

i=1

(21)

with ¥ = span{yy, s, ..., ¢,}. Equivalently we may write
(20) as

(AdYp) =F(p), i=1,2,..,n (22)
where for odd values of d we choose the collocation points as

p; = (i — 1}h and for even values of d we choose p;, =
(i — Hh with h = 27/n,

THEOREM 7.  Let d be either a positive odd integer exceeding
28 or a nonnegative even integer exceeding 23 — . Then
there exist hy > 0 such that for 0 < h = hy and any continuous
Junction F the collocation equations (22) are uniquely solvable
Jor &y and if s, t € R sartisfy

B=s=r=d+1 s<d+3% 28+%<y
and the solution ¢ of (18) is in H', then there holds the optimal
error estimate
llp — ulle = Ch|| i (23)

For practical problems the integrals over each element, the

components of the boundary element equations, (;)( p;} need

to be evaluated numerically. In this case in place of ¢, we
obtain the discrete collocation solution ¢, where
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du(p) = D, ah(p).

(24)

If we denote the n X n collocation matrix by &, and the discrete
collocation matrix, i.¢., including quadrature errors, by o, the
boundary element equations and the discrete boundary element
equations are

Aa, =%, and s4A4, = FSnF,. {25)

Using the triangular inequality, for the actual error, we have

I = ullar = @ — dullur + I — il

e (26)

The first part of the error-bound in (26), the discretisation
error, is governed by (23). We refer to the second part as the
quadrature induced error, although the error could arise from
methods other than quadrature [28]. Briefly, we have

”‘Qbh - ‘f’h

o= Hi] {a; — &y

5

=Ch (27

Z (ax' - &!)lk
i=1 T

= Ch™"

7.

lan — s ; lellus = Ch=2a, — a,

The first inequality above follows from the inverse property
[43] satisfied by our regular spline space which essentially
allows us to bound, for functions in ¥ ‘‘stronger norms’’ with
*‘weaker norms.”” We have also used the fact that for spline
basis functions 2|l = O(k~*). In practice it is difficult to
measure the quadrature error accurately, as often some elements
of the discrete coilocation matrix are computed more accurately
than others. However, we may assume that the maximum rela-
tive error in the quadrature approximation of any of the elements
is 6(h"). From (25) we have [9, 21]

A, — a . cond(sd,) {”.ﬂ" — &,

H@n_@n“
B - 1-v | & }

I
where v = ||, - &) [l#d;"]] < 1. We may deduce that
lla, — 4, = C cond(sd,)H.

It can be shown [48, 6, 7, 43] that cond(sd,) = G(h 2%
which, together with (27), leads to a bound for the quadrature
induced error of the form

llebs = Gl = G220, (28)
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Therefore, provided the quadrature errors are sufficiently
small, that is, ! is sufficiently large, the error in the discrete
collocation method is dominated by the collocation discretisa-
tion error (23} and it should remain G(%~*). In our boundary
integral equations the value of 2|8] is either O or 1 and, therefore,
the condition number of the collocation matrix is only either
O(1) or O(n).

4. SPECTRAL PROPERTIES OF THE
HELMHOLTZ OPERATORS

Tn this section the properties of the Helmholiz integral opera-
tors will be studied. In particular we are seeking to obtain
results on the conditioning of the operators in (13) and (14} as
k — k* € Iyr U Iyr. In order to carry out analytically such
investigation we restrict ourselves to the case where I' is a
unit circle. In this case we can find the eigensystems of these
operators exactly and use asymptotic expansions to estimate
the condition number of the operators in appropriate Sobolev
space setting. We are also able to investigate the conditioning
of the resulting collocation matrices, the discrete counterpart
of these operators.

If {:H"— H™% then

cond(sd) = [l rasl| |2y,
where
AW |25
o = sup Ll

provided {¥,} forms a complete set in H".

For the case of the periodic Sobolev spaces H'[(), 2], the
functions {¥,, = ™% m = 0, =1, =2, ..} form a complete set,
[31]. It follows from (19) that

¥l = (L + my.

We shall shortly show that in the case where I is a circle, the
functions ¥, = ¢ are the eigenfunctions of all four operators
L, M, = M; and N,. In this case, with sf representing any of
these operators with W, = A, ¥, it follows that

[Am[ ”‘I’mﬂﬂ"“’
iAo pr2e = sup T

(29)

=50 A
P

T - A

Similarly we can find that

1 1

H!—Zﬂ_’Hr = Sup = - foad s
o Jnfm Hin Finf

ot~

from which it follows that
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Psup

inf

cond(s) = (30)

Let us now state a result giving the eigensystem of the
Helmholtz operators, the proof of which may be found in [30];
see also [32, 2] for a similar result in three dimensions with T’
a unit sphere.

THeorREM 8. Form = 0,1, 2, ...,

Lyt = {% Jm(k)Hm(k)} g=ml = A%‘me:.'m@

Me=im® = { - % + %kl,’,,(k)[-]m(k)} gint

—= 1 iﬂ' 4 *imf — *im
= {5 + —Z—kJ,,,(k)H,,,(k)} e=mt = Ny _e*m

Mﬁe:f”‘a = Mketims = AM.km

*Timf — ; p=imé
e AMMe

Nke::'mﬂ — {% kZJ,:,(IC)H;,(k)} E:ms = AN* e:mﬂ

where J,, denotes the Bessel function of order m and H,, denotes
the Hankel function of the first kind of order m. Note that in
the above a prime ('} denotes the derivative with respect to k.

The following results now follows from Theorems 35 and 8.

TueoreM 9. If [ is a unit circle then
Ior = {kn Sl = 0, = 0,1,2, .and k = 1,2, ..}
and
wr = el Tukey = 0,m=10,1,2, .and k= 1,2, ..}

The zeros of the integer order Bessel functions and their
derivatives are listed in [1]. These form the values of the wave-
number k at which the elementary boundary integral equations
for the Helmholtz equation in the exterior domain such as (13)
and {14) become singular when I' is a unit circle. The number
of elements in the sets Ipr or Iy less than a given value of &
grows rapidly as k increases [14]. For large real values of £,
Egs. (13) and (14) are in general ill-conditioned. We wish to
investigate the precise conditioning of these boundary integral
equations and their discrete counterparts, near and also away
from these singularities.

4.1. Behaviour of High Order Eigenvalues

Let us now consider the asymptotic behaviour of the eigen-
values of the operators on either side of Eqgs. (13) and (14).
We use the asymptotic expansions given in Section 9.3.1 of [1]

1 ek
JAky~—|—1}, 31
“ \V2mm (2"“) G
V0~ — = (ﬁ) (32)
wm \Z2m

where Y, (k) is a Bessel function of the second kind. Since
H. (k) = J, (k) + iY,(k) it follows that

f 2 ek o

(33)
Differentiating {(31) and (33) with respect to &k gives
Tk~ d ("”‘) L (34)
" \/217 kom0

Hio~ i |2 em 2 () g o

Let us denote by A, (), the eigenvalues of the operator #.
Using the above asymptotic expansions in Theorem 8, we can
show that in the limit as m — oo,

Anll) = ——, {36)

AWM —=1]=A M’-—ll ~ 1 37
n k 2 m k 2 -~ 2)

a s 2=, (i)~ +1 (38)
M K 2 ] k 2 2a
m

AdNg =~ =5 (39

We refer the interested reader to [3] for a more detailed asymp-
totic expansion of the eigenvalues of the operators obtained
by using a series representation of J, and Y,,. Note from (39)
and (36) that for large m, A (L:NJ =~ —1 as predicted
by (7).

4.2, Eigenvalues near Characteristic Wavenumbers

Let & be sufficiently close to ;;, the j-th zero of the {-th order
Bessel function, J,, for some { € {0, 1, 2, ...} and some j €
{1. 2, ..}. Then, from Theorem 8, A{L) = (im/2)J(k)H, (k)
is the smallest eigenvalue of L,. Similarly A;(M, — 3I) =
(imi2)k J,(KYH{ (k) is the smallest eigenvalue of M, — 4. A
Taylor series expansion about k; shows that they have the
asymptotic form
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ML) = fg-Hl(kU) IRk — k)

+ Ok — k), (40)
A (Mk - %1) = i-g ki H (ki) Ji (ky Yk — ki)

Similarly, when k is sufficiently close to ky;, the jth zero of
Ji then A, (M, + 3I) is the smallest eigenvalue of M, + 37 and
A (N is the smallest eigenvalue of N, and they have the asymp-
totic form

1 “n' r I " r !
Ay (Mk + —1) = l"kerJ(ku) Ji (kij)(k - k-'j)

2 2

+ O(Ck — ki), (42)
AN = fg RIPH] ()G — kD)

+ Ok — k). (43)

In all cases, therefore, the absolute value of the smallest eigen-
value behaves as G(d™"), where d is the distance of k from the
appropriate singular sets fyy or Ixr.

4.3. Conditioning of the Operators

We are now in a position to look at the condition numbers
of Egs. (13) and (14). It follows from (29) that

L) = (Al L) Vim? + 1, (44)
(M — 3D = p My — 30 = [\ (M, — 3D (45)
pok My + 3D = po(My + 31) = [\ (M — 30)|  (46)

Al N
(N = —F—. 47

Substituting the results of (36)-(39) into the expressions
above gives the following results as m — o=

Malle) =3, (48)
oMy = 1) = pn(M§ — 31) = 3, (49)
sl M+ 31) = pnf MY+ 51) =14, (50)
pnND) = 3. (31}

Therefore, the condition numbers of our operators are likely to
be dominated, not by the high order eigenvalues as m — oo,
but by their proximity to their respective characteristic wave-
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numbers. For Eq. (13), near to a characteristic wavenumber kj;,
it follows from (40), (41), (44), and (45) that

T/
MinglLa) = (L) = 5 I*+ lle(k.'j)J!’(ktm lk - ktjl

+ 10k — k)], (52)
1 1
i (Mk - 51) = My (Mk - 51)
= gkl,-lH; (k) T (hy)| [ = k)
+ 00k — ky)?). (53)

Similarly, near the characteristic wavenumbers kj;, it follows
from (42), (43), (46), and (47) that

i 1
Hins (Mk + EI) = My (M‘. + 51)

iT ! ! (4 !
= Ekilel(klj) 5 (klj)‘ |k o kJ’_il

+ 10k — kP, (54)

Hr kr‘ " k k _ kl';

Hing( N = (i (N) = g‘k’ffz | ! U)\/{[(Z U+)|1 |
+ |®((k - k[j)z)l. (55)

Hence, near to the characteristic wavenumbers k;, the condi-
tion of the operators may be written in the form

cond(L,) =~ Pan(Ls) L (s6)
k) s
(@I2DVIE + 1 H (k) ] )| [k — kil
cond | M —ll = cond M'—ll
b )
wol M — (1/2)1
MM — (1/2)1) 1 7

(/2 | Gy T ) & = Rl

and near to the characteristic wavenumbers kj;, we have

cond (Mk +%1) = cond (Mﬁ +—;—I)

~ F'sup(Mk + (1/2)1) 1
(m/2kis | Hikiy) J} (ki) [k = ki
)usup(Nk) v 12 + 1 \ 1

cond(N,) = . {59
(m/2ki? | Hi (kip) I} (k)| Tk — ki

(58)
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It can be seen that the condition number of all the operators
involved behave as O(d™"), where d is the distance of &k from
the operators’ singular set [y or Iyr. We shall observe these
numerically in Section 3.

4.4 Properties of the Boundary Element Matrices

In order to study the conditioning of the boundary element
equations which are the discrete counterparts of the boundary
integral operators, let us assume that we have a uniform discreti-
sation of the boundary functions with N degrees of freedom.
Let us assume that the resulting matrix representation of the
operator approximates the » most fundamental eigenvalues of
the continuous operators. Note that for a given N, the value of
n will be different for the different matrices.

As a measure of the conditioning of the boundary element
equations we use the ratio of the largest to smallest, in absolute
value, of the eigenvalues of sf,. That is,

"max(&qn)

conds(sd,) = A (d)

(60)

This would be the 2-norm condition number of the matrix,
if sd, was a normal matrix. However, for our collocation matri-
ces the above will in general only be a good indication of the
conditioning of the boundary element equations [9].

For our example of a circle, each eigenvalue A, of the contin-
uous integral operator has two linearly independent eigenfunc-
tions e=™?, except for m = 0, where it has one. For N sufficiently
large, we would expect their discrete counterparts to provide
approximations t0 Ag, Ay, ... App, in which case n =
[N/2] + 1.

In what follows we assume that our discretisation is suffi-
ciently accurate (i.e., N/k is sufficiently large) so that the bound-
ary element matrices can be expected to mimic appropriate
spectral properties of the continuous operators. We denote the
matrix approximation to a given operator with & degrees of
freedom with a superscript [N].

Recall that, A.(L,), the eigenvalues of L, go to zero as
1/2m and therefore provided k is not very close to an element
of Ipr, we would expect

Amin(L)") 7= Au(Li). (61)
On the other hand, if & is close to k; then L and hence LI
will have a nearly zero eigenvalue of order O(/k — ky{™"). In
general, therefore,
Aminl LE") == min{A(Ly), (Lo} (62)
As far as the minimum eigenvalues of the other boundary
element matrices are concerned they can only be small if the
value of k is close to a corresponding element of Iy or Iy
Therefore if k is close to & then
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Al MM — $100) == A (M, — 31) = O(lk — k™). (63)
Similarly, if & is close to k};
Aol M+ 510 = A (M, + 31 = Ok — k1™ (64)
and
Anial NP = NN} = O(k — ki;| ™). (65)

The maximum eigenvalues of the matrices LY, ML"” — %
and MM + 37 are €(1) and rapidly convergent as N — oo,
However, the maximum eigenvalue of the hyper-singular opera-
tor N, is not bounded. We have

Anad N 2 A, (N = O(N). (66)

It now follows from (60)—(66) that the condition numbers
of MM — 4I'™) and MM + 7™ behave as G(d™"), where 4 is
the distance of & from the set I or the set Jyr, respectively.
For the matrix L™, because of (62), its condition number be-
haves as G(d™"), for a fixed N as d — 0, whilst for k fixed it
behaves as O(N) as N — o« (see Table II in Section 5). For
the hyper-singular operator, it can be seen from (65) and (66)
that the condition number of the matrix N[* behaves as O(Nd™%),
where d is the distance of k from Iyr.

5. NUMERICAL EXPERIMENTS

In this section the resulis of the analysis in the previous
sections are illustrated through applying the boundary element
method to radiation and scattering problems from a unit circle.
The boundary element method is derived through dividing the
boundary into N uniform elements and approximating the
boundary functions by a constant on each element.

5.1. Conditioning of the Boundary Element Equations

Properties of the boundary element matrices are considered
at three nearby wavenumbers, k = 6.00000, k = 6.38016 €
Ipr, k= 670613 € Iy, (to six significant figures). In all cases,
the eigenvalues are computed using routine FO2AKF from the
NAG library [38].

Let the approximations based on the formulation (13) be
identified by SHE, the surface Helmholtz equation, and those
based on the differentiated surface Helmholtz equation (14) be
identified by DSHE. Therefore we identify by SHE-Dirichlet,
the solution of the Dirchlet problem, using the formuiation
(13), yielding a first kind boundary integral equation for deg/
drn and so on.

5.1.1. Eigenvalues at a Non-characteristic Wavenumber

For ease of notation, from now on, we shall drop the super-
script [N] when referring to the N X N matrix approximation
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TABLE I

Properties of Matrices, k = 6.0
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TABLE HI
Condition Numbers of M, — 3/ or M}, — 31, k =~ k* = 6.38016

Condition

Matrix N A ] | Aok number
L 64 0.23220 0.01858 12.49862
128 0.23389 0.00913 25.54818
156 0.23432 0.00456 51.37426

512 023443 0.00228 102.88801
M, — ¥ 64 0.97517 0.33166 2.94026
or 128 0.97770 0.33227 2.94251
My — %I 256 0.97833 0.33242 2.94306
512 0.97849 0.33246 2.94320
M, + 41 64 0.98219 0.21746 451669
or 128 0.98358 0.21725 4.52735
ML+ 3 256 0.98392 021721 4.52986
512 0.98401 0.21720 4.53047
N, 64 9,85444 0.83729 11.76938
128 20.20744 0.84629 23.87757
256 40.66163 0.84820 47.93867
512 81.44633 0.84863 95.97376

of an operator. In Table I the modulus of the largest and the
smallest eigenvalues of the matrices Ly, M, — 51 (=M} — 3I),
M, + I (=M + £I), and N, are given for k = 6.00000 and
with 64, 128, 256, and 512 elements. The matrix condition
number, as defined by (60), which is simply the modulus of
the maximum divided by the minimum eigenvalue, is also listed.

The results confirm the analysis of Section 4. The minimum
and maximum eigenvalues and hence the condition number of
the matrices M, — 3J and M} — 3/ converge to a finite value
as N— oo, For the matrix L, , however, the maximum eigenvalue
converges but the minimum eigenvalue behaves as O(1/N) as
N — o_ For the matrix N;, the minimum eigenvalue converges

TABLE 11
Condition Numbers of L,, k = k* = 6.38016

1 1 1 1 1 1

_ = - _ — —_ ke —

Ntk & 16 ke 64 ke 256 k ket 256 ket 64 ke + 16
64 1.76(1y  7.10(1)  2.63(2) 5492) 241(2) 6941 L1771
128 1.76(1)  T.10(1)  2.85(2) 2.20(3) 2.78(2) 7.08(1) L.79(L)
256 1.76¢1)  7.09(1) 2.85(2) 8.82(3) 2832y 711{1) L1791
512 L76(1) 7.09(1) Z.84(2) 334¢4y 2.84(2) T.AL(L) LIKD
lek—) k*—L k*—i k*——L I+ k*+;‘ kt+L k*+L
16 64 256 256 64 16

64 1.76(1)  7.10(1y  2.63(2) 5492) 1.87(2) 6311 L75(0)
i28 1L76(1)  7.00(1)y  2.85(2) 2.2003) 251(2) 69L{1) L1.80(1)
256 L76(D) 7.09%1) 2852y 882(3) 2.76(2) 7.08(1) 181D
512 1.76(1) 7.0%1) 2.842) 3.54(4) 2.84(2) T7.12(1) L3I

as N — o but the maximum eigenvalue behaves as O(N). The
condition numbers of the matrices M, — 5/ and M, + %/ mimic
those of their respective boundary operators but the condition
number of the matrices L, and N, are G(N).

5.1.2. Condition of Matrices near a
Characteristic Wavenumber

Tables 11 and IIT list the condition number of the matrices
L, and M, — 31 (=M} — $I) near a characteristic wavenumber
of their respective continuous operators. Results are given for
k= 638016 = §and k = 6.38016 * i8 for § = 4. &. me-
The value k* = 6.38016 is the first zero of Ji(k), correct to six
significant figures. Also, Tables IV and V list the condition
number of the matrices M, + 41 (=M{ + £I) and N, near a
characteristic wavenumber of their respective continuous opera-
tors. Results are given for k = 6.70613 * §for § = 15, 51, 5t
The value k* = 6.70613 is the second zero of J3(k), correct to
six significant figures. The results for & = 6.70613 = id
are not given as these are almost identical to those for £ =
6.70613 = 4.

Several observations can be made from the tables. At the
characteristic wavenumbers of the operators the condition num-
ber of their corresponding matrix approximations grows rapidly
as N — oo,

S I L I 1 L L For the L, matrix in Table II, as discussed in Section 4.4, in
Nlfls k= b= drmoe 0 ke bo ko bt i
64 2311} 044(1)  4.10(2) 3.60(3) 3342y 898D  2.29(1)
128 249(1) 927(1)  3.74(2) 3.03(4) 3.66(2) 9231 24501 TABLE IV
256 50100y 926(1) 3712 3.38(5) 3.70(2)  9.26(1) 4.92(1) - ) )
512 10K 998(1) 3TN 1.29(6) 3TLR)  9.93(1)  9.86(1 Condition Numbers of M, + 2l or M} + 2l, k = k* = 6.70613
N th— P T T LA L A TR S N (A S P T L UUIE H 0 L
16 54 256 256 64 16 16 64 256 256 64 16
64 227(1) 941y  3.66(2) 3.60(3) 367D 9241y 233D 64 L62(1) 654(1) 2532 121(3) 263(2) 665(1) L67(1)
128 2.58(1) 9221y  3.70(2) 3.03(4y 3.70{2) 9281) 2.37(1) 128 1631 657(1)  2.62(2) 486(3) 2.65(2) 6.63(1) 1.67(1)
256 S 9231y 3.70(2) 338(5) 3712 929(1) 47N 256 L63(1) 6.57(1) 263(2) 1934 2652 6.63(1) 1.67(1)
512 100(2) 998(1y  370(2) 1.29(6) 3.71(2) 9BS(1)  9.56(1) 512 1.63(1) 6.58(1) 2.63(2) T424) 265(2) 6.62(1) 1.67(1)
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TABLE V
Condition Numbers of N, k =~ k¥ = 6.70613

1 1 1 1 1 1
N fTe— k*'—i; .’(*—a k* ﬁ i* k*+ﬁ k*+6*z .7(*+~1—6
64 260(1) L03(2) 4192  1.97(4) 4.01(2) L.02(2) 2.53(1)
128 534(1)  2.12(2) 8462y 4.356) 845(2) 2.11(2) 5.23(2)
256 1.08(2) 4.27(2y 1.70(3) 1.11(6) 1.70(3) 4.25(2) L1.05(2)
512 2.16(2) 8.55(2) 3.41(3) 2.57(6) 3.41(3) 851(2) 211D

general the eigenvalues will tend towards zero as ¢/N. Near a
characteristic wavenumber, the modulus of the smallest eigen-
value of the matrix L, behaves as min{c,|k — k*|, c/N}. There-
fore the condition number L, behaves as max{d,/|k — &*|, &, N}.
Looking along the first column of Table II for the case ¥ =
k* — {5 we note that the doubling of the condition number
occurs for N > 128, where it is dominated by &, N with d, =
0.2. The first two numbers in that column and results in columns
for k = k* — & and k = k* — 35 show that there the condi-
tion number is dominated by d,/|k — k*| with the value of
dl = 1.5.

For the matrices M, — £ and M, + 3/ in Tables Il and IV,
the smallest eigenvalues behave as G(|k — &*|) and hence their
condition numbers behave as O(1/|k — k*|), remaining stable
along each column but increasing as k — &*.

For the N, matrix, its smallest eigenvalue behaves as
0,(Jk — k*|) and its largest eigenvalue as C,(N) and therefore
its condition number behaves as G(N/|k — k*|). Moving down
along each column in Table V we observe the doubling of the
condition number and along each row the condition numbers
increase by a factor of 4, in accordance with 1/]k — k*|.

These observations and results are valid for & varying along
the real axis and into the complex plane.
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5.2. Error in Solution

For the purpose of comparison with numerical solution, exact
solutions can be generated for any boundary, for fields which
are produced by point scurces [25, 4). Here we assume the
boundary condition on the unit circle x? + y? = 1 produced
by placing one point source at py = (x5, ¥o) = (0, 0.5) with
unit strength. The field generated by this point source is

op) = HOKlp — p). pER (67)

The Dirichlet boundary condition generating the above field
(67) for p € D, is obtained by choosing p € I in (67). We
obtain the Neumann boundary condition from (67) using {d¢/
an)p) = Vo n,.

In this section we study the error in the numerical solution
of Egs. (13) and (14) for both the Dirichiet and the Neumann
boundary conditions. In the tables we refer to these as SHE-
Dirichlet, SHE-Neumann, DSHE-Dirichlet, and DSHE-Neu-
mann. The measure of error that we use is the relative mean
error (RME),

S lfi =

RME(f) = g7,

2 Al

where f is the numerical approximation to f.

The numerical error is observed both for the theorefical
collocation method, that is, when the collocation matrices are
exactly {or very accurately) represented and also for the discrete
collocation method, where the collocation matrices are obtained
using quadrature rules.

TABLE VI
Log, RME in Solution

k N SHE-Dirichlet DSHE-Dirichlet SHE-Neumann DSHE-Neumann
6.00000 ’ 64 —8.76 —8.98 —8.66 —8.65
128 —-10.77 —11.01 —10.66 —-10.70
256 —-12.37 —13.02 -12.66 —-12.72
512 —-14.77 —15.03 -14.66 ~1473
6.38016 64 1.13 —6.04 —1.14 —5.41
128 2.18 -7.99 —-1.15 —7.51
256 3.66 -9.99 -1.14 —-0.54
512 3.59 —12.00 —-1.14 —11.55
6.70613 64 —8.29 —-0.67 —8.22 2.68
128 -10.31 ~0.69 -10.23 7.41
256 —-12.30 —0.70 -12.23 242
512 —14.30 -0.76 -14.23 0.63
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TABLE VII
Log, RME in SHE-Dirichlet, k = k* = 6.38016
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TABLE IX
Log, RME in DSHE-Dirichlet, k = k* = 6.70613

. 1 ) 1 I

k*+L

1 1 1 1 1 1

: ¥ _ L e S S~ 3 MLIN PR T T I T ., B R B
Nllio br=qe k=g Begg k0 g g 6 N k- R o T g g
64 =617 413 —201 LI3 —230  —420 —6.15 64 —676 —487 -292 —067 288 <487 —685
128 —819 -617 -416 218 419 —617 -815 128  —878 —688 -489 —069 488  —689 887
256 1019 —818 617 366 —617 816 —1014 256 —1079 -888 —689 —070 —689 —890 —10.87
512 —12.19  —=10.17 —8.17 3.50 -8.17 ~10,16 —12.14 512 —12.78 —10.88 —8.89 -0.76 —8.80 —-10.89 —-12.87

5.2.1. Results for Exact Matrices

Table VI gives the RME for N = 64,128,256, and 512 for
each of the surface Helmholtz equation, SHE-method (Eq. (13)}
and the differentiated surface Helmholtz equation, DSHE-
method (Eq. (14)) for the wavenumbers & = 6.00000, & =
6.38016, and k = 6.70613, with Dirichlet and Neumann bound-
ary conditions.

The results in Table VI demonstrate the extremes in the
results that arise from using the elementary methods. Away
from their respective characteristic wavenumbers the methods
converge at a rate proportional to 1/N?, demonstrating super-
convergence of the collocation method at collocation points.
However, at thejr respective characteristic wavenumbers no
convergence is observed.

In Tables VII-X we explore the error in the methods close
to the characteristic wavenumbers of the boundary integral
equations. These resuits may be looked at in conjunction with
Tables 11-V for the condition number of the appropriate ma-
trices.

The results in Tables VII-X show that for any given fixed
number of elements the mean relative error is approximately
proportional to 1/|k — k*| for k varying along the real axis and
into the complex plane, as in Tables 1I-V. This is due to the
fact that the condition number of the relevant boundary integral
operators behaves as 0(1/]k — k*|). Along each column we
observe the O(N~?) convergence. The increase in the condition
number of the matrices L, and N, as shown in Tables II and
V, with increase in &, plays no role in the asymptotic behaviour
of the collocation solution as one would expect from (22). In
all cases, for a fixed value of k, the condition number of matrices
for large N behaves as G(N?¥), where 28 is the order of the

TABLE VIII
Log, RME in SHE-Neumann, & = k* = 6.38016

underlying pseudo-differential operator. Recall that for L; and
N, the value of 23 equals — 1 and + 1, respectively, whilst for
31 + M, the value of 23 is zero. We shall see in the next
section that the condition number of boundary element matrices
play an important role in the case of the discrete collocation
methods.

5.2.2. Results for Approximate Matrices

Inn order to study the effect of the quadrature error on the
accuracy of the discrete collocation solution, a deliberate error
is introduced into the elements of the boundary element matrices
Ly, My, My, and N, to give L, M, M}, and N,. The approxima-
tions are defined so that

_ (_1)|'+j
[Ilkl,-j—(w o )[Ld.,»,

(68)

and similarly for the other matrices. The inclusion of an error
of the form (68) simulates and structures the error that may
be present in the computation of the matrices. In a discrete
collocation methed one would like to ensure that all the ele-
ments of the matrices have errors of similar size which are less
than a prescribed value, (), say. Ideally &(N) should be
chosen such that the quadrature induced error in the solution
is of the same size as the discretisation error, A(N).

Here by fixing e(N) at 27%, as N is increased we are able to
study cases where the integration error is small, about the same
and also large, compared to the discretisation error. The results
are given in Tables XI-XIV. It is interesting and instructive
to study these results alongside Tables I[I-V, on the condition
numnber of the corresponding matrices and also alongside Tables

TABLE X
Log, RME in DSHE-Neumann, &k = k* = 6.70613

1 1 1 1

k*_L

1 1 1 1

1 1 - 1
N7k * - EF - k* * 4 —  k* 4 — * G Jp—— _ *_ k¥ * o — * *
Lk 16 k 64 g 256 k +256 k +64 ket 16 Ntk & 16 o 64 k 256 k 256 ¥ +64 k 16
64 —611 —-409 -220 -1il14 -233 412 -6.08 64 —-674 —487 -287 268 —293 -492 —-6387
128 ~812 —-610 -410 -LI5 -413 —6.10 —8.08 128 —876 —690 —492 741 —4.92 —-653 —889
256 -10t1  —810 —6.10 -1.14 -s6.11 —8.10 —10.08 256 —-10.77  —891 -693 242 693 —-893 -1090
312 —I1211 -1010 -810 -1L14 —-810 -—10.09 -—12.08 512 —i2.77 -1091 892 063 —893 1093 —1289




220 AMINI AND KIRKUP

TABLE XI
Log: MRE in SHE-Dirichlet, £ = k* = 6.38016

TABLE XIII
Log; MRE in DSHE-Dirichlet, k = k* = 6.70613

1 1 1 1 1

1 1 1 | 1 1

1

Nk H o & o e * —_ -4 _ A —_ S * _ — . * * —_ * —_— ® -
Who demqg dom Bmg B kram Ktk *g M= B-g o e B Bo g kg
64 =554 —407 201 113 -230 -412 —555 64  —604 —48 —296 —068 -291 —481 ~608
128 —478 —475 —39%4 218 —396 —~475 —43l 128 =527 —535 —465 —058 —464 —527 —530
256 —379% —380 -379 366 —379 -380 —331 256 —428 —428 —408 178 —408 —420 43l
512 -279 —280 —280 359 —280 —281 —28] 512 —-320 -328 —307 595 —307 -320 —3.32

VII-X, for the respective collocation error for the case with
negligible integration errors.

Because of the injected error of 273 in all the matrix elements,
we cannot expect accuracies beyond this value and indeed this
is observed in all tables.

For many of the results in the Tables XI-XIV, the observed
error is much greater than the corresponding results in Tables
VII-X. In these cases, it is clearly the error from the matrix
approximation that is dominant. In general, provided the inte-
gration error is sufficiently small compared to the discretisation
error, this has no adverse effect on the error in the discrete
collocation approximation. This is because the condition num-
bers of the boundary element matrices are moderately small,
either (1), for =37 + M, and I + M} or O(N), for L, and
N,. However, if the numerical quadrature errors are of compara-
ble size or larger than the discretisation error, doubling the
number of collocation points may actually double the error in
the discrete collocation approximation due to the G(N) condi-
tion number of the boundary element matrices {(see Tables XI
and XIII).

1t follows from (23), (27), and (28) (with s = Q) that if the
expected discretisation error is S(N), to retain this level of
accuracy in the discrete collocation solution we should aim for
integration errors () with e(N) = 8(N). N2, This follows
from (28) with 2|8 = 1. In our examples here S(N) = CN7%,
hence g(N} = CN™™? is recommended.

6. CONCLUSIONS

The results in Table VI show that the elementary methods
simply do not work at characteristic wavenumbers. Tables VI

TABLE XII
Log, MRE in SHE-Neumann, & = k* = 6.38016

X show that near characteristic wavenumbers the error in the
numerical approximation is inversely proportional to the dis-
tance of & from the characteristic sets. Even though the expected
O(N%) convergence is still observed near the characteristic
wavenumbers, this nevertheless implies that in order to obtain
the same level of accuracy when |k — k*| = sk as when |k —
k*| = g we need twice the number of elements. This deteriora-
tion of the accuracy with proximity to characteristic wavenum-
bers is undesirable, especially as one in general does not know
a priori the characteristic sets Jpr and Iyp.

The improved integral equations such as {17) can be well-
conditioned for all values of k, provided an appropriate choice
of an inherent coupling parameter is used; see [32, 30, 2].
Hence, at least when % is close to the characteristic values
the improved integral equation formulations will provide more
efficient methods than the elementary methods. Given that the
characteristic wavenumbers become more and more clustered
as real k increases, the improved methods such as (17) will be
more efficient than the elementary methods for all real values
of k sufficiently large. However, for complex values of k, suffi-
ciently away from the real axis, the elementary equations are
expected to be the most suitable for yielding efficient methods
of solution.

Regarding the use of numerical quadratare, Tables XI-
XIV show that, provided the integration error is sufficiently
small compared to the discretisation error, this should not
have a significant effect on the error in the discrete collocation
approximation. However, if the quadrature errors are larger
or of comparable size to the discretisation error, increasing
the number of collocation points may actually increase the
error in the discrete collocation approximation. This is because

TABLE XIV
Log, MRE in DSHE-Neumann, k =~ k* = 6.70613

1 1 1 i 1 1

1 1 1 1

Nik— k-1 o+~

Nl el el oL e e b el e L T S N O L ey
e T A BT+ i Mlhe M 6 ¥ @ 256 756 64 T3
64 606 410 —221 —L14 -234 —413 604 64  —663 486 —287 268 —2093 —490 -673
128 —7.59 —6.10 —4.14 —1.15 —4.18 —6.10 —7.57 128 —7.80 —6.76 —4.90 7.41 —4.91 —6.78 —7.78
256 —797 —766 —625 —115 —625 —765 —797 256 798 783  -678 242 678 —182 197
512 800 —795  —785 114 —789 ~799 —8.00 512 —799  —798  —7.83 063 —783 798 —7.99
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these cases the total error will be dominated by the

quadrature induced errors which increase with &, due to
@O(N) behaviour of the condition number of certain boundary
element matrices.
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